A generalization of Kummer theory to Hopf-Galois extensions

Daniel Gil Muñoz

Charles University in Prague Department of Algebra

Hopf Algebras & Galois Module Theory June 2023

University of Nebraska at Omaha (online)

Definition

A field Galois extension L/K is Kummer if $\zeta_n \in K$ and the Galois group G is abelian of exponent dividing n.

Definition

A field Galois extension L/K is Kummer if $\zeta_n \in K$ and the Galois group G is abelian of exponent dividing n.

The Kummer extensions of K are the radical ones

$$L = K(\sqrt[n]{a_1}, \ldots, \sqrt[n]{a_k}), \quad \zeta_n \in K.$$

Definition

A field Galois extension L/K is Kummer if $\zeta_n \in K$ and the Galois group G is abelian of exponent dividing n.

The Kummer extensions of K are the radical ones

$$L = K(\sqrt[n]{a_1}, \ldots, \sqrt[n]{a_k}), \quad \zeta_n \in K.$$

We can rewrite the Kummer condition in terms of the Galois group and its action on *L*.

Definition

A field Galois extension L/K is Kummer if $\zeta_n \in K$ and the Galois group G is abelian of exponent dividing n.

The Kummer extensions of K are the radical ones

$$L = K(\sqrt[n]{a_1}, \ldots, \sqrt[n]{a_k}), \quad \zeta_n \in K.$$

We can rewrite the Kummer condition in terms of the Galois group and its action on *L*.

Now, if L/K is an *H*-Galois extension, one can follow the style of that definition to define an *H*-Kummer condition.

Definition

A field Galois extension L/K is Kummer if $\zeta_n \in K$ and the Galois group G is abelian of exponent dividing n.

The Kummer extensions of *K* are the radical ones

$$L = K(\sqrt[n]{a_1}, \ldots, \sqrt[n]{a_k}), \quad \zeta_n \in K.$$

We can rewrite the Kummer condition in terms of the Galois group and its action on *L*.

Now, if L/K is an *H*-Galois extension, one can follow the style of that definition to define an *H*-Kummer condition.

From this new perspective, we can study many extensions for which $\zeta_n \notin K$ and translate results as the one above to this new setting.

Table of contents

Kummer Hopf-Galois extensions

The module structure of radical extensions 3

Table of contents

1 Kummer Hopf-Galois extensions

- Product Hopf-Galois structures
- 3 The module structure of radical extensions

Proposition

The cyclic extensions of K are the simple radical ones:

$$L = K(\sqrt[n]{a}), \quad a \in K^{\times}/(K^{\times})^n.$$

Proposition

The cyclic extensions of K are the simple radical ones:

$$L = K(\sqrt[n]{a}), \quad a \in K^{\times}/(K^{\times})^{n}.$$

Let L/K be a cyclic degree *n* extension with group *G*.

Proposition

The cyclic extensions of K are the simple radical ones:

$$L = K(\sqrt[n]{a}), \quad a \in K^{\times}/(K^{\times})^{n}.$$

Let L/K be a cyclic degree *n* extension with group *G*.

Let $\alpha = \sqrt[n]{a}$ (in particular $L = K(\alpha)$). The conjugates of α are $\alpha, \zeta_n \alpha, \dots, \zeta_n^{n-1} \alpha$.

Proposition

The cyclic extensions of K are the simple radical ones:

$$L = K(\sqrt[n]{a}), \quad a \in K^{\times}/(K^{\times})^{n}.$$

Let L/K be a cyclic degree *n* extension with group *G*.

Let $\alpha = \sqrt[n]{a}$ (in particular $L = K(\alpha)$). The conjugates of α are $\alpha, \zeta_n \alpha, \dots, \zeta_n^{n-1} \alpha$.

Then for each $\sigma \in G$ there is a unique $0 \le i_{\sigma} \le n-1$ such that

$$\sigma(\alpha) = \zeta_n^{i_\sigma} \alpha.$$

Proposition

The cyclic extensions of K are the simple radical ones:

$$L = K(\sqrt[n]{a}), \quad a \in K^{\times}/(K^{\times})^{n}.$$

Let L/K be a cyclic degree *n* extension with group *G*.

Let $\alpha = \sqrt[n]{a}$ (in particular $L = K(\alpha)$). The conjugates of α are $\alpha, \zeta_n \alpha, \dots, \zeta_n^{n-1} \alpha$.

Then for each $\sigma \in G$ there is a unique $0 \le i_{\sigma} \le n-1$ such that

$$\sigma(\alpha) = \zeta_n^{i_\sigma} \alpha.$$

The element α is an eigenvector of all the automorphisms in *G*. We call it a *G*-eigenvector.

Let L/K be a Galois extension with group G. Then L/K admits some primitive element which is a G-eigenvector if and only if $\zeta_n \in K$ and L/K is cyclic.

Let L/K be a Galois extension with group G. Then L/K admits some primitive element which is a G-eigenvector if and only if $\zeta_n \in K$ and L/K is cyclic.

If $L = K(\sqrt[n]{a})$ is such an extension, a primitive element which is a *G*-eigenvector is $\alpha = \sqrt[n]{a}$.

Let L/K be a Galois extension with group G. Then L/K admits some primitive element which is a G-eigenvector if and only if $\zeta_n \in K$ and L/K is cyclic.

If $L = K(\sqrt[n]{a})$ is such an extension, a primitive element which is a *G*-eigenvector is $\alpha = \sqrt[n]{a}$.

This characterization can be extended to arbitrary Kummer extensions.

Let L/K be a Galois extension with group G. Then L/K admits some primitive element which is a G-eigenvector if and only if $\zeta_n \in K$ and L/K is cyclic.

If $L = K(\sqrt[n]{a})$ is such an extension, a primitive element which is a *G*-eigenvector is $\alpha = \sqrt[n]{a}$.

This characterization can be extended to arbitrary Kummer extensions.

Idea: Any Kummer extension can be described as a compositum of cyclic extensions and the eigenvectors property *lifts* in compositums.

Proposition

If α_i is a G_i -eigenvector for $i \in \{1, 2\}$, then $\alpha_1 \alpha_2$ is a *G*-eigenvector.

Proposition

If α_i is a G_i -eigenvector for $i \in \{1, 2\}$, then $\alpha_1 \alpha_2$ is a *G*-eigenvector.

Theorem

Let L/K be a Galois extension of K with group G. Then, L/K admits some finite generating set of G-eigenvectors if and only if $\zeta_n \in K$ and L/K is Kummer.

Proposition

If α_i is a G_i -eigenvector for $i \in \{1, 2\}$, then $\alpha_1 \alpha_2$ is a *G*-eigenvector.

Theorem

Let L/K be a Galois extension of K with group G. Then, L/K admits some finite generating set of G-eigenvectors if and only if $\zeta_n \in K$ and L/K is Kummer.

If $L = K(\sqrt[n]{a_1}, \dots, \sqrt[n]{a_k})$ is such an extension, a finite generating set of *G*-eigenvectors is $\{\sqrt[n]{a_1}, \dots, \sqrt[n]{a_k}\}$.

Definition

Let L/K be an H-Galois extension. We say that $\alpha \in L$ is an H-eigenvector if for every $h \in H$ there is some $\lambda(h) \in K$ such that

 $h \cdot \alpha = \lambda(h)\alpha.$

Definition

Let L/K be an H-Galois extension. We say that $\alpha \in L$ is an H-eigenvector if for every $h \in H$ there is some $\lambda(h) \in K$ such that

 $h \cdot \alpha = \lambda(h)\alpha.$

The previous result says that a Galois extension L/K with $\zeta_n \in K$ is Kummer if and only if it admits some finite generating set of H_c -eigenvectors, where H_c is the classical Galois structure on L/K.

Definition

Let L/K be an H-Galois extension. We say that $\alpha \in L$ is an H-eigenvector if for every $h \in H$ there is some $\lambda(h) \in K$ such that

 $h \cdot \alpha = \lambda(h)\alpha.$

The previous result says that a Galois extension L/K with $\zeta_n \in K$ is Kummer if and only if it admits some finite generating set of H_c -eigenvectors, where H_c is the classical Galois structure on L/K.

Definition

We say that an H-Galois extension L/K is H-Kummer if it admits some finite generating set of H-eigenvectors.

It is well known that adjoining $\omega = \sqrt[3]{2}$ to \mathbb{Q} does not give a Galois extension of \mathbb{Q} , i.e., there is no set of automorphisms of $\mathbb{Q}(\omega)$ whose set of common fixed elements is precisely \mathbb{Q} . However, one can define the following linear maps s, c from $\mathbb{Q}(\omega)$ to itself by

$$c(1) = 1, c(\omega) = -\frac{1}{2}\omega, c(\omega^2) = -\frac{1}{2}\omega^2,$$

$$s(1) = 0, s(\omega) = \frac{1}{2}\omega, s(\omega^2) = -\frac{1}{2}\omega^2,$$

Figure: C. Greither, B. Pareigis (1986)

It is well known that adjoining $\omega = \sqrt[3]{2}$ to \mathbb{Q} does not give a Galois extension of \mathbb{Q} , i.e., there is no set of automorphisms of $\mathbb{Q}(\omega)$ whose set of common fixed elements is precisely \mathbb{Q} . However, one can define the following linear maps s, c from $\mathbb{Q}(\omega)$ to itself by

$$c(1) = 1,$$
 $c(\omega) = -\frac{1}{2}\omega,$ $c(\omega^2) = -\frac{1}{2}\omega^2,$
 $s(1) = 0,$ $s(\omega) = \frac{1}{2}\omega,$ $s(\omega^2) = -\frac{1}{2}\omega^2,$

Figure: C. Greither, B. Pareigis (1986)

The extension $L = \mathbb{Q}(\omega)$ admits a unique Hopf-Galois structure *H*. A basis of the underlying Hopf algebra can be written as {Id, *c*, *s*}.

It is well known that adjoining $\omega = \sqrt[3]{2}$ to \mathbb{Q} does not give a Galois extension of \mathbb{Q} , i.e., there is no set of automorphisms of $\mathbb{Q}(\omega)$ whose set of common fixed elements is precisely \mathbb{Q} . However, one can define the following linear maps s, c from $\mathbb{Q}(\omega)$ to itself by

c(1) = 1, $c(\omega) = -\frac{1}{2}\omega,$ $c(\omega^2) = -\frac{1}{2}\omega^2,$ s(1) = 0, $s(\omega) = \frac{1}{2}\omega,$ $s(\omega^2) = -\frac{1}{2}\omega^2,$

Figure: C. Greither, B. Pareigis (1986)

The extension $L = \mathbb{Q}(\omega)$ admits a unique Hopf-Galois structure *H*. A basis of the underlying Hopf algebra can be written as {Id, *c*, *s*}.

If an element is an eigenvector with respect to a K-basis of H, then it is an H-eigenvector.

It is well known that adjoining $\omega = \sqrt[3]{2}$ to \mathbb{Q} does not give a Galois extension of \mathbb{Q} , i.e., there is no set of automorphisms of $\mathbb{Q}(\omega)$ whose set of common fixed elements is precisely \mathbb{Q} . However, one can define the following linear maps s, c from $\mathbb{Q}(\omega)$ to itself by

c(1) = 1, $c(\omega) = -\frac{1}{2}\omega,$ $c(\omega^2) = -\frac{1}{2}\omega^2,$ s(1) = 0, $s(\omega) = \frac{1}{2}\omega,$ $s(\omega^2) = -\frac{1}{2}\omega^2,$

Figure: C. Greither, B. Pareigis (1986)

The extension $L = \mathbb{Q}(\omega)$ admits a unique Hopf-Galois structure *H*. A basis of the underlying Hopf algebra can be written as {Id, *c*, *s*}.

If an element is an eigenvector with respect to a K-basis of H, then it is an H-eigenvector.

Therefore, ω is an *H*-eigenvector and L/\mathbb{Q} is *H*-Kummer.

Definition

L/*K* is almost classically Galois (a.c.G.) if there is J \triangleleft G such that $G = J \rtimes G'$. We will say that $M = \widetilde{L}^J$ is the complement of *L*.

Definition

L/*K* is almost classically Galois (a.c.G.) if there is J \triangleleft G such that $G = J \rtimes G'$. We will say that $M = \widetilde{L}^J$ is the complement of *L*.

Definition

L/*K* is almost classically Galois (a.c.G.) if there is J \triangleleft G such that $G = J \rtimes G'$. We will say that $M = \widetilde{L}^J$ is the complement of *L*.

Hopf-Galois structures on L/Kcorrespond bijectively to regular *G*-stable subgroups of Perm(G/G').

Definition

L/*K* is almost classically Galois (a.c.G.) if there is J \triangleleft G such that $G = J \rtimes G'$. We will say that $M = \widetilde{L}^J$ is the complement of *L*.

Hopf-Galois structures on L/Kcorrespond bijectively to regular *G*-stable subgroups of Perm(G/G').

 $\lambda \colon G \longrightarrow \operatorname{Perm}(G/G')$ left translation.

Definition

L/*K* is almost classically Galois (a.c.G.) if there is $J \triangleleft G$ such that $G = J \rtimes G'$. We will say that $M = \widetilde{L}^J$ is the complement of *L*.

Hopf-Galois structures on L/Kcorrespond bijectively to regular *G*-stable subgroups of Perm(G/G').

 $\lambda \colon G \longrightarrow \operatorname{Perm}(G/G')$ left translation.

 $N = \lambda(J)$ is such a subgroup.
Let L/K be a separable extension with normal closure \tilde{L} , $G = \operatorname{Gal}(\tilde{L}/K)$ and $G' = \operatorname{Gal}(\tilde{L}/L)$.

Definition

L/*K* is almost classically Galois (a.c.G.) if there is $J \triangleleft G$ such that $G = J \rtimes G'$. We will say that $M = \widetilde{L}^J$ is the complement of *L*.

Hopf-Galois structures on L/Kcorrespond bijectively to regular *G*-stable subgroups of Perm(G/G').

 $\lambda \colon \boldsymbol{G} \longrightarrow \operatorname{Perm}(\boldsymbol{G}/\boldsymbol{G}')$ left translation.

 $N = \lambda(J)$ is such a subgroup.

If *J* is abelian, the corresponding Hopf-Galois structure will be called **the a.c.G. structure corresponding to** *M*.

Let L/K be a separable extension with normal closure \tilde{L} , $G = \operatorname{Gal}(\tilde{L}/K)$ and $G' = \operatorname{Gal}(\tilde{L}/L)$.

Definition

L/K is almost classically Galois (a.c.G.) if there is $J \triangleleft G$ such that $G = J \rtimes G'$. We will say that $M = \widetilde{L}^J$ is the complement of *L*.

Hopf-Galois structures on L/Kcorrespond bijectively to regular *G*-stable subgroups of Perm(G/G').

 $\lambda \colon G \longrightarrow \operatorname{Perm}(G/G')$ left translation.

 $N = \lambda(J)$ is such a subgroup.

If J is abelian, the corresponding Hopf-Galois structure will be called **the a.c.G. structure corresponding to** M.

Identifying $J \cong \lambda(J)$, the underlying Hopf algebra is $H = M[J]^{G'}$.

Proposition

Let *H* be the a.c.*G*. structure on L/K corresponding to *M*. Then $\alpha = \sqrt[n]{a}$ is an *H*-eigenvector.

Proposition

Let *H* be the a.c.*G*. structure on L/K corresponding to *M*. Then $\alpha = \sqrt[n]{a}$ is an *H*-eigenvector.

Sketch of proof: \tilde{L}/M is a Kummer extension and α is a *J*-eigenvector.

Proposition

Let H be the a.c.G. structure on L/K corresponding to M. Then $\alpha = \sqrt[n]{a}$ is an H-eigenvector.

Sketch of proof: \tilde{L}/M is a Kummer extension and α is a *J*-eigenvector. Since $H = M[J]^{G'}$, elements of *H* are *M*-linear combinations of elements in *J*.

Proposition

Let *H* be the a.c.*G*. structure on L/K corresponding to *M*. Then $\alpha = \sqrt[n]{a}$ is an *H*-eigenvector.

Sketch of proof: \tilde{L}/M is a Kummer extension and α is a *J*-eigenvector. Since $H = M[J]^{G'}$, elements of *H* are *M*-linear combinations of elements in *J*.

Then, given $h = \sum_i m_i(h) w_i \in H$,

$$h \cdot \alpha = \sum_{i} m_{i}(h) w_{i} \cdot \alpha = \sum_{i} m_{i}(h) \lambda_{i} \alpha = \lambda(h) \alpha,$$

where $\lambda(h) = \sum_{i} m_i(h) \lambda_i \in M$.

Proposition

Let *H* be the a.c.*G*. structure on L/K corresponding to *M*. Then $\alpha = \sqrt[n]{a}$ is an *H*-eigenvector.

Sketch of proof: \tilde{L}/M is a Kummer extension and α is a *J*-eigenvector. Since $H = M[J]^{G'}$, elements of *H* are *M*-linear combinations of elements in *J*.

Then, given $h = \sum_i m_i(h) w_i \in H$,

$$h \cdot \alpha = \sum_{i} m_{i}(h) w_{i} \cdot \alpha = \sum_{i} m_{i}(h) \lambda_{i} \alpha = \lambda(h) \alpha,$$

where $\lambda(h) = \sum_{i} m_{i}(h)\lambda_{i} \in M$. But $\lambda(h) = \frac{h \cdot \alpha}{\alpha} \in L \cap M = K$.

Theorem

Let L/K be an H-Galois extension. The following statements are equivalent:

- $L \cap K(\zeta_n) = K$ and L/K is simple radical.
- L/K is an a.c.G. extension with complement K(ζ_n) and admits some primitive element which is an H-eigenvector, where H is the a.c.G. structure on L/K corresponding to K(ζ_n).

Theorem

Let L/K be an H-Galois extension. The following statements are equivalent:

- $L \cap K(\zeta_n) = K$ and L/K is simple radical.
- L/K is an a.c.G. extension with complement K(ζ_n) and admits some primitive element which is an H-eigenvector, where H is the a.c.G. structure on L/K corresponding to K(ζ_n).

If $L = K(\sqrt[n]{a})$ is such an extension, a primitive element which is an *H*-eigenvector is $\alpha = \sqrt[n]{a}$.

L/K is a.c.G. with complement $M = K(\zeta_n)$ and we can consider the a.c.G. structure *H* corresponding to $K(\zeta_n)$.

L/K is a.c.G. with complement $M = K(\zeta_n)$ and we can consider the a.c.G. structure *H* corresponding to $K(\zeta_n)$.

Natural question: Is *L/K H*-Kummer?

L/K is a.c.G. with complement $M = K(\zeta_n)$ and we can consider the a.c.G. structure *H* corresponding to $K(\zeta_n)$.

Natural question: Is *L/K H*-Kummer?

Natural strategy: Work with the simple radical extensions $L_i = K(\sqrt[n]{a_i})$ and *lift* the information to their compositums.

L/K is a.c.G. with complement $M = K(\zeta_n)$ and we can consider the a.c.G. structure *H* corresponding to $K(\zeta_n)$.

Natural question: Is *L/K H*-Kummer?

Natural strategy: Work with the simple radical extensions $L_i = K(\sqrt[n]{a_i})$ and *lift* the information to their compositums.

Set k = 2, so that $L = L_1 L_2$, $L_i = K(\sqrt[n]{a_i})$.

L/K is a.c.G. with complement $M = K(\zeta_n)$ and we can consider the a.c.G. structure *H* corresponding to $K(\zeta_n)$.

Natural question: Is *L/K H*-Kummer?

Natural strategy: Work with the simple radical extensions $L_i = K(\sqrt[n]{a_i})$ and *lift* the information to their compositums.

Set
$$k = 2$$
, so that $L = L_1 L_2$, $L_i = K(\sqrt[n]{a_i})$.

L/K is a.c.G. with complement $M = K(\zeta_n)$ and we can consider the a.c.G. structure *H* corresponding to $K(\zeta_n)$.

Natural question: Is *L/K H*-Kummer?

Natural strategy: Work with the simple radical extensions $L_i = K(\sqrt[n]{a_i})$ and *lift* the information to their compositums.

Set
$$k = 2$$
, so that $L = L_1 L_2$, $L_i = K(\sqrt[n]{a_i})$.

Let H_i be the a.c.G. structure corresponding to $K(\zeta_{n_i})$, $i \in \{1, 2\}$.

L/K is a.c.G. with complement $M = K(\zeta_n)$ and we can consider the a.c.G. structure *H* corresponding to $K(\zeta_n)$.

Natural question: Is *L/K H*-Kummer?

Natural strategy: Work with the simple radical extensions $L_i = K(\sqrt[n]{a_i})$ and *lift* the information to their compositums.

Set
$$k = 2$$
, so that $L = L_1 L_2$, $L_i = K(\sqrt[n]{a_i})$.

Let H_i be the a.c.G. structure corresponding to $K(\zeta_{n_i})$, $i \in \{1, 2\}$.

If α_i is an H_i -eigenvector, is $\alpha_1\alpha_2$ an H-eigenvector?

- Product Hopf-Galois structures
- 3 The module structure of radical extensions

Is $L = L_1 L_2$ an a.c.G. extension?

Is $L = L_1 L_2$ an a.c.G. extension? It is easy to see that $\tilde{L} = \tilde{L_1 L_2}$.

Is $L = L_1 L_2$ an a.c.G. extension? It is easy to see that $\tilde{L} = \tilde{L_1 L_2}$.

We need to assume that L_1 and L_2 are K-linearly disjoint.

Is $L = L_1 L_2$ an a.c.G. extension? It is easy to see that $\tilde{L} = \tilde{L_1 L_2}$.

We need to assume that L_1 and L_2 are K-linearly disjoint.

This is the condition that the epimorphism

$$L_1 \otimes_K L_2 \longrightarrow L_1 L_2$$

is an isomorphism.

Two linearly disjoint a.c.G. extensions L_1/K , L_2/K with complements M_1 , M_2 are said to be **strongly disjoint** if

 $L_1 \cap M_2 = L_2 \cap M_1 = K.$

Two linearly disjoint a.c.G. extensions L_1/K , L_2/K with complements M_1 , M_2 are said to be **strongly disjoint** if

 $L_1 \cap M_2 = L_2 \cap M_1 = K.$

Proposition

If L_1/K and L_2/K are strongly disjoint a.c.G. extensions with complements M_1 , M_2 , then $L = L_1L_2$ is an a.c.G. extension of K with complement $M = M_1M_2$.

Two linearly disjoint a.c.G. extensions L_1/K , L_2/K with complements M_1 , M_2 are said to be **strongly disjoint** if

$$L_1 \cap M_2 = L_2 \cap M_1 = K.$$

Proposition

If L_1/K and L_2/K are strongly disjoint a.c.G. extensions with complements M_1 , M_2 , then $L = L_1L_2$ is an a.c.G. extension of K with complement $M = M_1M_2$.

$$L \otimes_{\kappa} M = (L_1 \otimes_{\kappa} M_1)(L_1 \otimes_{\kappa} M_2)(L_2 \otimes_{\kappa} M_1)(L_2 \otimes_{\kappa} M_2)$$
$$\cong \widetilde{L}(L_1 \otimes_{\kappa} M_2)(L_2 \otimes_{\kappa} M_1)$$

Two linearly disjoint a.c.G. extensions L_1/K , L_2/K with complements M_1 , M_2 are said to be **strongly disjoint** if

$$L_1 \cap M_2 = L_2 \cap M_1 = K.$$

Proposition

If L_1/K and L_2/K are strongly disjoint a.c.G. extensions with complements M_1 , M_2 , then $L = L_1L_2$ is an a.c.G. extension of K with complement $M = M_1M_2$.

$$L \otimes_{\mathcal{K}} M = (L_1 \otimes_{\mathcal{K}} M_1)(L_1 \otimes_{\mathcal{K}} M_2)(L_2 \otimes_{\mathcal{K}} M_1)(L_2 \otimes_{\mathcal{K}} M_2)$$
$$\cong \widetilde{L}(L_1 \otimes_{\mathcal{K}} M_2)(L_2 \otimes_{\mathcal{K}} M_1)$$

Since $M_1, M_2/K$ are Galois, strong disjointness gives $L_i \otimes_K M_j \hookrightarrow \widetilde{L}$.

There is an embedding $G \hookrightarrow G_1 \times G_2$, by which

$$G' \hookrightarrow G'_1 \times G'_2, \quad J \hookrightarrow J_1 \times J_2.$$

Since L_1/K and L_2/K are linearly disjoint, $J \cong J_1 \times J_2$.

There is an embedding $G \hookrightarrow G_1 \times G_2$, by which

$$G' \hookrightarrow G'_1 \times G'_2, \quad J \hookrightarrow J_1 \times J_2.$$

Since L_1/K and L_2/K are linearly disjoint, $J \cong J_1 \times J_2$. Hopf-Galois structures on L/K: Regular subgroups of Perm(G/G') normalized by $\lambda : G \longrightarrow \text{Perm}(G/G')$.

There is an embedding $G \hookrightarrow G_1 \times G_2$, by which

$$G' \hookrightarrow G'_1 \times G'_2, \quad J \hookrightarrow J_1 \times J_2.$$

Since L_1/K and L_2/K are linearly disjoint, $J \cong J_1 \times J_2$.

Hopf-Galois structures on L/K: Regular subgroups of Perm(G/G') normalized by $\lambda: G \longrightarrow \text{Perm}(G/G')$.

Hopf-Galois structures on L_i/K : Regular subgroups of $\operatorname{Perm}(G_i/G'_i)$ normalized by $\lambda_i \colon G_i \longrightarrow \operatorname{Perm}(G_i/G'_i)$.

Strategy: To factorize λ through $\operatorname{Perm}(G_1/G'_1) \times \operatorname{Perm}(G_2/G'_2)$.

Strategy: To factorize λ through $\operatorname{Perm}(G_1/G'_1) \times \operatorname{Perm}(G_2/G'_2)$.

$$\begin{array}{cccc} G & \longrightarrow & \operatorname{Perm}(G_1/G_1') \times \operatorname{Perm}(G_2/G_2') & \longrightarrow & \operatorname{Perm}(G/G') \\ g & \longmapsto & (\lambda_1(g_1), \lambda_2(g_2)) \\ & & (\varphi_1, \varphi_2) & \longmapsto & ? \end{array}$$

Strategy: To factorize λ through $\operatorname{Perm}(G_1/G'_1) \times \operatorname{Perm}(G_2/G'_2)$.

$$egin{array}{rcl} G &\longrightarrow & \operatorname{Perm}(G_1/G_1') imes \operatorname{Perm}(G_2/G_2') &\longrightarrow & \operatorname{Perm}(G/G') \ g &\longmapsto & (\lambda_1(g_1),\lambda_2(g_2)) \ & & & & & & (arphi_1,arphi_2) &\longmapsto & ? \end{array}$$

Lemma

There is a bijection

$$\begin{array}{rccc} \psi \colon & G/G' & \longrightarrow & G_1/G_1' \times G_2/G_2' \\ & g_1g_2G' & \longmapsto & (g_1G_1',g_2G_2') \end{array}$$
Strategy: To factorize λ through $\operatorname{Perm}(G_1/G'_1) \times \operatorname{Perm}(G_2/G'_2)$.

$$\begin{array}{cccc} G & \longrightarrow & \operatorname{Perm}(G_1/G_1') \times \operatorname{Perm}(G_2/G_2') & \longrightarrow & \operatorname{Perm}(G/G') \\ g & \longmapsto & (\lambda_1(g_1), \lambda_2(g_2)) \\ & & (\varphi_1, \varphi_2) & \longmapsto & ? \end{array}$$

Lemma

There is a bijection $\psi: \begin{array}{ccc} G/G' & \longrightarrow & G_1/G'_1 \times G_2/G'_2 \\ g_1g_2G' & \longmapsto & (g_1G'_1,g_2G'_2) \end{array}$

Then there is a well defined map

$$\iota$$
: Perm $(G_1/G'_1) \times \text{Perm}(G_2/G'_2) \longrightarrow \text{Perm}(G/G').$

It is easy to check that ι is a monomorphism.

If N_i is a regular subgroup of $\text{Perm}(G_i/G'_i)$ normalized by $\lambda_i(G_i)$ for every $i \in \{1, 2\}$, then $N = \iota(N_1 \times N_2)$ is a regular subgroup of Perm(G/G') normalized by $\lambda(G)$.

If N_i is a regular subgroup of $\text{Perm}(G_i/G'_i)$ normalized by $\lambda_i(G_i)$ for every $i \in \{1, 2\}$, then $N = \iota(N_1 \times N_2)$ is a regular subgroup of Perm(G/G') normalized by $\lambda(G)$.

Definition

Let $H_i = \widetilde{L}_i[N_i]^{G_i}$ be a Hopf-Galois structure on L_i/K , $i \in \{1, 2\}$. The Hopf-Galois structure $H = \widetilde{L}[N]^G$ on L/K will be called the **product Hopf-Galois structure** of H_1 and H_2 . The name of this new object is justified by the following.

The name of this new object is justified by the following.

Proposition

Let H be the product Hopf-Galois structure of H_1 and H_2 . Then:

1.
$$H \cong H_1 \otimes_K H_2$$
 as *K*-algebras.
2. If $h_i \in H_i$ and $\alpha_i \in L_i$ for $i \in \{1, 2\}$, then

$$(h_1h_2)\cdot(\alpha_1\alpha_2)=(h_1\cdot\alpha_1)(h_2\cdot\alpha_2).$$

The name of this new object is justified by the following.

Proposition

Let H be the product Hopf-Galois structure of H_1 and H_2 . Then:

Let ρ_{H_i} : $H_i \longrightarrow \text{End}_K(L_i)$ and ρ_H : $H \longrightarrow \text{End}_K(L)$ be the actions of H_i on L_i for $i \in \{1, 2\}$ and of H on L, respectively. Then

 $\rho_H = \rho_{H_1} \otimes_K \rho_{H_2}.$

Let *H* be the product Hopf-Galois structure of H_1 and H_2 .

Let *H* be the product Hopf-Galois structure of H_1 and H_2 .

Proposition

If α_i is an H_i -eigenvector for $i \in \{1, 2\}$, then $\alpha_1 \alpha_2$ is an H-eigenvector.

Let *H* be the product Hopf-Galois structure of H_1 and H_2 .

Proposition

If α_i is an H_i -eigenvector for $i \in \{1, 2\}$, then $\alpha_1 \alpha_2$ is an H-eigenvector.

Proposition

Let M_i be the complement of L_i/K and let $M = M_1M_2$. If H_i is the a.c.G. structure on L_i/K corresponding to M_i , then H is the a.c.G. structure on L/K corresponding to M.

We will call an extension strongly decomposable if it is a compositum of strongly disjoint extensions.

We will call an extension strongly decomposable if it is a compositum of strongly disjoint extensions.

Theorem

Let L/K be a strongly decomposable H-Galois extension. The following statements are equivalent:

- $L \cap K(\zeta_n) = K$ and L/K is radical.
- L/K is an a.c.G. extension with complement K(ζ_n) and L/K is H-Kummer, where H is the a.c.G. extension on L/K corresponding to K(ζ_n).

We will call an extension strongly decomposable if it is a compositum of strongly disjoint extensions.

Theorem

Let L/K be a strongly decomposable H-Galois extension. The following statements are equivalent:

- $L \cap K(\zeta_n) = K$ and L/K is radical.
- L/K is an a.c.G. extension with complement K(ζ_n) and L/K is H-Kummer, where H is the a.c.G. extension on L/K corresponding to K(ζ_n).

If $L = K(\sqrt[n]{a_1}, \dots, \sqrt[n]{a_k})$ is such an extension, a finite generating set of *H*-eigenvectors is $\{\sqrt[n]{a_1}, \dots, \sqrt[n]{a_k}\}$.

- Kummer Hopf-Galois extensions
- Product Hopf-Galois structures
- 3 The module structure of radical extensions

Associated order of \mathcal{O}_L in H: $\mathfrak{A}_H = \{h \in H \mid h \cdot \mathcal{O}_L \subset \mathcal{O}_L\}.$

Associated order of \mathcal{O}_{I} in *H*:

Associated order of \mathcal{O}_L in H: $\mathfrak{A}_H = \{h \in H \mid h \cdot \mathcal{O}_L \subset \mathcal{O}_L\}.$

Is \mathcal{O}_L free as \mathfrak{A}_H -module?

Theorem

Assume that there is an \mathcal{O}_K -basis of \mathcal{O}_L which in addition is a *K*-basis of *H*-eigenvectors for *L*. Then \mathcal{O}_L is \mathfrak{A}_H -free.

Associated order of \mathcal{O}_L in H: $\mathfrak{A}_H = \{h \in H \mid h \cdot \mathcal{O}_L \subset \mathcal{O}_L\}.$

Is \mathcal{O}_L free as \mathfrak{A}_H -module?

Theorem

Assume that there is an \mathcal{O}_K -basis of \mathcal{O}_L which in addition is a *K*-basis of *H*-eigenvectors for *L*. Then \mathcal{O}_L is \mathfrak{A}_H -free.

Example

Let $L = \mathbb{Q}(\omega)$, $\omega = \sqrt[3]{2}$. We have seen that $\{1, \omega, \omega^2\}$ are *H*-eigenvectors of *L*.

Associated order of \mathcal{O}_L in H: $\mathfrak{A}_H = \{h \in H \mid h \cdot \mathcal{O}_L \subset \mathcal{O}_L\}.$

Is \mathcal{O}_L free as \mathfrak{A}_H -module?

Theorem

Assume that there is an \mathcal{O}_K -basis of \mathcal{O}_L which in addition is a *K*-basis of *H*-eigenvectors for *L*. Then \mathcal{O}_L is \mathfrak{A}_H -free.

Example

Let $L = \mathbb{Q}(\omega)$, $\omega = \sqrt[3]{2}$. We have seen that $\{1, \omega, \omega^2\}$ are *H*-eigenvectors of *L*. In addition, it is an integral basis of *L*.

Associated order of \mathcal{O}_L in H: $\mathfrak{A}_H = \{h \in H \mid h \cdot \mathcal{O}_L \subset \mathcal{O}_L\}.$

Is \mathcal{O}_L free as \mathfrak{A}_H -module?

Theorem

Assume that there is an \mathcal{O}_K -basis of \mathcal{O}_L which in addition is a *K*-basis of *H*-eigenvectors for *L*. Then \mathcal{O}_L is \mathfrak{A}_H -free.

Example

Let $L = \mathbb{Q}(\omega)$, $\omega = \sqrt[3]{2}$. We have seen that $\{1, \omega, \omega^2\}$ are *H*-eigenvectors of *L*. In addition, it is an integral basis of *L*. Then, \mathcal{O}_L is \mathfrak{A}_H -free.

Let $L = K(\sqrt[n]{a})$ be a simple radical extension such that $L \cap K(\zeta_n) = K$ and $\mathcal{O}_L = \mathcal{O}_K[\sqrt[n]{a}]$. Then \mathcal{O}_L is \mathfrak{A}_H -free, where H is the a.c.G. structure corresponding to $K(\zeta_n)$.

Let $L = K(\sqrt[n]{a})$ be a simple radical extension such that $L \cap K(\zeta_n) = K$ and $\mathcal{O}_L = \mathcal{O}_K[\sqrt[n]{a}]$. Then \mathcal{O}_L is \mathfrak{A}_H -free, where H is the a.c.G. structure corresponding to $K(\zeta_n)$.

If $K = \mathbb{Q}$, a sufficient condition is that $a^p \not\equiv a \pmod{p^2}$ for every prime $p \mid n$ (Gassert).

Let $L = K(\sqrt[n]{a})$ be a simple radical extension such that $L \cap K(\zeta_n) = K$ and $\mathcal{O}_L = \mathcal{O}_K[\sqrt[n]{a}]$. Then \mathcal{O}_L is \mathfrak{A}_H -free, where H is the a.c.G. structure corresponding to $K(\zeta_n)$.

If $K = \mathbb{Q}$, a sufficient condition is that $a^p \not\equiv a \pmod{p^2}$ for every prime $p \mid n$ (Gassert).

Corollary

Let $L = \mathbb{Q}(\sqrt[n]{a})$ be such that $L \cap \mathbb{Q}(\zeta_n) = \mathbb{Q}$ and $a^p \not\equiv a \pmod{p^2}$ for every prime divisor p of n. Then \mathcal{O}_L is \mathfrak{A}_H -free. Module structure over the product Hopf-Galois structure:

Module structure over the product Hopf-Galois structure:

Proposition

Let L_1/K and L_2/K be strongly and arithmetically disjoint a.c.G. extensions. Let H be the product Hopf-Galois structure on L/Kfrom Hopf-Galois structures H_i on L_i/K . If \mathcal{O}_{L_i} is \mathfrak{A}_{H_i} -free for all $i \in \{1, 2\}$, then \mathcal{O}_L is \mathfrak{A}_{H} -free. Module structure over the product Hopf-Galois structure:

Proposition

Let L_1/K and L_2/K be strongly and arithmetically disjoint a.c.G. extensions. Let H be the product Hopf-Galois structure on L/Kfrom Hopf-Galois structures H_i on L_i/K . If \mathcal{O}_{L_i} is \mathfrak{A}_{H_i} -free for all $i \in \{1, 2\}$, then \mathcal{O}_L is \mathfrak{A}_{H} -free.

Proposition

Let $L = K(\sqrt[n_1]{a_1}, \dots, \sqrt[n_k]{a_k})$ and call $L_i = K(\sqrt[n_i]{a_i})$. Assume:

- $L_i \cap K(\zeta_{n_i}) = K$ for every $1 \le i \le k$.
- L_i/K and L_i/K are strongly and arithmetically disjoint.
- $\mathcal{O}_{L_i} = \mathcal{O}_K[\sqrt[n_i]{a_i}]$ for every $1 \le i \le k$.

Then \mathcal{O}_L is \mathfrak{A}_H -free.

- L.N. Childs; Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory, Mathematical Surveys and Monographs 80, American Mathematical Society, 2000.
- T. A. Gassert; *A note on the monogenity of power maps*, Albanian Journal of Mathematics **11** (2017), 3-12.
- D. Gil-Muñoz; A generalization of Kummer theory to Hopf-Galois extensions, Preprint (2023).
- C. Greither, B. Pareigis; *Hopf-Galois theory for separable field extensions*, Journal of Algebra **106** (1987), 239-258.

Thank you for your attention